extension | φ:Q→Aut N | d | ρ | Label | ID |
C32.1(C3×C3⋊S3) = C3×C33⋊S3 | φ: C3×C3⋊S3/C32 → S3 ⊆ Aut C32 | 18 | 6 | C3^2.1(C3xC3:S3) | 486,165 |
C32.2(C3×C3⋊S3) = C34⋊5S3 | φ: C3×C3⋊S3/C32 → S3 ⊆ Aut C32 | 18 | 6 | C3^2.2(C3xC3:S3) | 486,166 |
C32.3(C3×C3⋊S3) = C3×He3.3S3 | φ: C3×C3⋊S3/C32 → S3 ⊆ Aut C32 | 54 | 6 | C3^2.3(C3xC3:S3) | 486,168 |
C32.4(C3×C3⋊S3) = He3.C3⋊S3 | φ: C3×C3⋊S3/C32 → S3 ⊆ Aut C32 | 54 | 6 | C3^2.4(C3xC3:S3) | 486,169 |
C32.5(C3×C3⋊S3) = C3×He3⋊S3 | φ: C3×C3⋊S3/C32 → S3 ⊆ Aut C32 | 54 | 6 | C3^2.5(C3xC3:S3) | 486,171 |
C32.6(C3×C3⋊S3) = He3⋊C3⋊2S3 | φ: C3×C3⋊S3/C32 → S3 ⊆ Aut C32 | 54 | 6 | C3^2.6(C3xC3:S3) | 486,172 |
C32.7(C3×C3⋊S3) = C3×3- 1+2.S3 | φ: C3×C3⋊S3/C32 → S3 ⊆ Aut C32 | 54 | 6 | C3^2.7(C3xC3:S3) | 486,174 |
C32.8(C3×C3⋊S3) = C33⋊(C3×S3) | φ: C3×C3⋊S3/C32 → S3 ⊆ Aut C32 | 27 | 18+ | C3^2.8(C3xC3:S3) | 486,176 |
C32.9(C3×C3⋊S3) = He3.C3⋊2C6 | φ: C3×C3⋊S3/C32 → S3 ⊆ Aut C32 | 27 | 18+ | C3^2.9(C3xC3:S3) | 486,177 |
C32.10(C3×C3⋊S3) = He3⋊(C3×S3) | φ: C3×C3⋊S3/C32 → S3 ⊆ Aut C32 | 27 | 18+ | C3^2.10(C3xC3:S3) | 486,178 |
C32.11(C3×C3⋊S3) = C3.He3⋊C6 | φ: C3×C3⋊S3/C32 → S3 ⊆ Aut C32 | 27 | 18+ | C3^2.11(C3xC3:S3) | 486,179 |
C32.12(C3×C3⋊S3) = C3×He3.4S3 | φ: C3×C3⋊S3/C32 → S3 ⊆ Aut C32 | 54 | 6 | C3^2.12(C3xC3:S3) | 486,234 |
C32.13(C3×C3⋊S3) = 3+ 1+4⋊C2 | φ: C3×C3⋊S3/C32 → S3 ⊆ Aut C32 | 27 | 18+ | C3^2.13(C3xC3:S3) | 486,236 |
C32.14(C3×C3⋊S3) = 3- 1+4⋊C2 | φ: C3×C3⋊S3/C32 → S3 ⊆ Aut C32 | 27 | 18+ | C3^2.14(C3xC3:S3) | 486,238 |
C32.15(C3×C3⋊S3) = C9○He3⋊4S3 | φ: C3×C3⋊S3/C32 → S3 ⊆ Aut C32 | 54 | 6 | C3^2.15(C3xC3:S3) | 486,246 |
C32.16(C3×C3⋊S3) = C34⋊5C6 | φ: C3×C3⋊S3/C32 → C6 ⊆ Aut C32 | 27 | | C3^2.16(C3xC3:S3) | 486,167 |
C32.17(C3×C3⋊S3) = C32⋊4D9⋊C3 | φ: C3×C3⋊S3/C32 → C6 ⊆ Aut C32 | 81 | | C3^2.17(C3xC3:S3) | 486,170 |
C32.18(C3×C3⋊S3) = He3⋊C3⋊3S3 | φ: C3×C3⋊S3/C32 → C6 ⊆ Aut C32 | 81 | | C3^2.18(C3xC3:S3) | 486,173 |
C32.19(C3×C3⋊S3) = C3≀C3.S3 | φ: C3×C3⋊S3/C32 → C6 ⊆ Aut C32 | 27 | 6+ | C3^2.19(C3xC3:S3) | 486,175 |
C32.20(C3×C3⋊S3) = C9○He3⋊3S3 | φ: C3×C3⋊S3/C32 → C6 ⊆ Aut C32 | 81 | | C3^2.20(C3xC3:S3) | 486,245 |
C32.21(C3×C3⋊S3) = C3⋊S3×3- 1+2 | φ: C3×C3⋊S3/C3⋊S3 → C3 ⊆ Aut C32 | 54 | | C3^2.21(C3xC3:S3) | 486,233 |
C32.22(C3×C3⋊S3) = 3+ 1+4⋊2C2 | φ: C3×C3⋊S3/C3⋊S3 → C3 ⊆ Aut C32 | 27 | 9 | C3^2.22(C3xC3:S3) | 486,237 |
C32.23(C3×C3⋊S3) = 3- 1+4⋊2C2 | φ: C3×C3⋊S3/C3⋊S3 → C3 ⊆ Aut C32 | 27 | 9 | C3^2.23(C3xC3:S3) | 486,239 |
C32.24(C3×C3⋊S3) = C9×C9⋊S3 | φ: C3×C3⋊S3/C33 → C2 ⊆ Aut C32 | 54 | | C3^2.24(C3xC3:S3) | 486,133 |
C32.25(C3×C3⋊S3) = C3×C9⋊D9 | φ: C3×C3⋊S3/C33 → C2 ⊆ Aut C32 | 162 | | C3^2.25(C3xC3:S3) | 486,134 |
C32.26(C3×C3⋊S3) = C3×C32⋊2D9 | φ: C3×C3⋊S3/C33 → C2 ⊆ Aut C32 | 54 | | C3^2.26(C3xC3:S3) | 486,135 |
C32.27(C3×C3⋊S3) = C33⋊C18 | φ: C3×C3⋊S3/C33 → C2 ⊆ Aut C32 | 54 | | C3^2.27(C3xC3:S3) | 486,136 |
C32.28(C3×C3⋊S3) = C33⋊D9 | φ: C3×C3⋊S3/C33 → C2 ⊆ Aut C32 | 81 | | C3^2.28(C3xC3:S3) | 486,137 |
C32.29(C3×C3⋊S3) = C9⋊(S3×C9) | φ: C3×C3⋊S3/C33 → C2 ⊆ Aut C32 | 54 | | C3^2.29(C3xC3:S3) | 486,138 |
C32.30(C3×C3⋊S3) = C92⋊3S3 | φ: C3×C3⋊S3/C33 → C2 ⊆ Aut C32 | 54 | 6 | C3^2.30(C3xC3:S3) | 486,139 |
C32.31(C3×C3⋊S3) = C92⋊4S3 | φ: C3×C3⋊S3/C33 → C2 ⊆ Aut C32 | 54 | 6 | C3^2.31(C3xC3:S3) | 486,140 |
C32.32(C3×C3⋊S3) = C92⋊3C6 | φ: C3×C3⋊S3/C33 → C2 ⊆ Aut C32 | 81 | | C3^2.32(C3xC3:S3) | 486,141 |
C32.33(C3×C3⋊S3) = He3⋊3D9 | φ: C3×C3⋊S3/C33 → C2 ⊆ Aut C32 | 81 | | C3^2.33(C3xC3:S3) | 486,142 |
C32.34(C3×C3⋊S3) = C92⋊9C6 | φ: C3×C3⋊S3/C33 → C2 ⊆ Aut C32 | 81 | | C3^2.34(C3xC3:S3) | 486,144 |
C32.35(C3×C3⋊S3) = C34⋊3S3 | φ: C3×C3⋊S3/C33 → C2 ⊆ Aut C32 | 18 | 6 | C3^2.35(C3xC3:S3) | 486,145 |
C32.36(C3×C3⋊S3) = C34⋊4C6 | φ: C3×C3⋊S3/C33 → C2 ⊆ Aut C32 | 27 | | C3^2.36(C3xC3:S3) | 486,146 |
C32.37(C3×C3⋊S3) = C34.7S3 | φ: C3×C3⋊S3/C33 → C2 ⊆ Aut C32 | 18 | 6 | C3^2.37(C3xC3:S3) | 486,147 |
C32.38(C3×C3⋊S3) = C9⋊He3⋊2C2 | φ: C3×C3⋊S3/C33 → C2 ⊆ Aut C32 | 81 | | C3^2.38(C3xC3:S3) | 486,148 |
C32.39(C3×C3⋊S3) = (C32×C9)⋊S3 | φ: C3×C3⋊S3/C33 → C2 ⊆ Aut C32 | 54 | 6 | C3^2.39(C3xC3:S3) | 486,149 |
C32.40(C3×C3⋊S3) = (C32×C9)⋊8S3 | φ: C3×C3⋊S3/C33 → C2 ⊆ Aut C32 | 54 | 6 | C3^2.40(C3xC3:S3) | 486,150 |
C32.41(C3×C3⋊S3) = (C32×C9)⋊C6 | φ: C3×C3⋊S3/C33 → C2 ⊆ Aut C32 | 81 | | C3^2.41(C3xC3:S3) | 486,151 |
C32.42(C3×C3⋊S3) = C9⋊C9⋊2S3 | φ: C3×C3⋊S3/C33 → C2 ⊆ Aut C32 | 54 | 6 | C3^2.42(C3xC3:S3) | 486,152 |
C32.43(C3×C3⋊S3) = C92⋊6S3 | φ: C3×C3⋊S3/C33 → C2 ⊆ Aut C32 | 18 | 6 | C3^2.43(C3xC3:S3) | 486,153 |
C32.44(C3×C3⋊S3) = C92⋊10C6 | φ: C3×C3⋊S3/C33 → C2 ⊆ Aut C32 | 81 | | C3^2.44(C3xC3:S3) | 486,154 |
C32.45(C3×C3⋊S3) = C92⋊4C6 | φ: C3×C3⋊S3/C33 → C2 ⊆ Aut C32 | 81 | | C3^2.45(C3xC3:S3) | 486,155 |
C32.46(C3×C3⋊S3) = C92⋊5S3 | φ: C3×C3⋊S3/C33 → C2 ⊆ Aut C32 | 54 | 6 | C3^2.46(C3xC3:S3) | 486,156 |
C32.47(C3×C3⋊S3) = C92⋊5C6 | φ: C3×C3⋊S3/C33 → C2 ⊆ Aut C32 | 81 | | C3^2.47(C3xC3:S3) | 486,157 |
C32.48(C3×C3⋊S3) = C92⋊11C6 | φ: C3×C3⋊S3/C33 → C2 ⊆ Aut C32 | 81 | | C3^2.48(C3xC3:S3) | 486,158 |
C32.49(C3×C3⋊S3) = C92⋊12C6 | φ: C3×C3⋊S3/C33 → C2 ⊆ Aut C32 | 81 | | C3^2.49(C3xC3:S3) | 486,159 |
C32.50(C3×C3⋊S3) = C32×C9⋊S3 | φ: C3×C3⋊S3/C33 → C2 ⊆ Aut C32 | 54 | | C3^2.50(C3xC3:S3) | 486,227 |
C32.51(C3×C3⋊S3) = C3×C33.S3 | φ: C3×C3⋊S3/C33 → C2 ⊆ Aut C32 | 54 | | C3^2.51(C3xC3:S3) | 486,232 |
C32.52(C3×C3⋊S3) = C3×C32⋊4D9 | φ: C3×C3⋊S3/C33 → C2 ⊆ Aut C32 | 162 | | C3^2.52(C3xC3:S3) | 486,240 |
C32.53(C3×C3⋊S3) = C9×C33⋊C2 | φ: C3×C3⋊S3/C33 → C2 ⊆ Aut C32 | 162 | | C3^2.53(C3xC3:S3) | 486,241 |
C32.54(C3×C3⋊S3) = C34.11S3 | φ: C3×C3⋊S3/C33 → C2 ⊆ Aut C32 | 81 | | C3^2.54(C3xC3:S3) | 486,244 |
C32.55(C3×C3⋊S3) = C9×He3⋊C2 | central extension (φ=1) | 81 | | C3^2.55(C3xC3:S3) | 486,143 |
C32.56(C3×C3⋊S3) = C3⋊S3×C3×C9 | central extension (φ=1) | 54 | | C3^2.56(C3xC3:S3) | 486,228 |
C32.57(C3×C3⋊S3) = C32×He3⋊C2 | central extension (φ=1) | 81 | | C3^2.57(C3xC3:S3) | 486,230 |
C32.58(C3×C3⋊S3) = C3×He3.4C6 | central extension (φ=1) | 81 | | C3^2.58(C3xC3:S3) | 486,235 |